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Fig. 5. Variation of even- and odd-mode impedances as a function of W/&
and w/h for coupled warped striplines and microstrip lines, respectively.
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Curve Description cl <2 S/b S/h
a, e Coupled warped strip3ines 1.0 1.0 0.1 —
b, C Coupled warped striplines 1.0 1.0 0.5
d, f Coupled warped nricrostripfines 10.0 1.0 — 0:2

where s is the edge to edge separation of the planar strips. When

It can be further approximated that
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In this case, the expressions for the even- and odd-mode imped-

ances of warped coupled striplines reduce to the from
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Using (16) and (17), the variation of even- and odd-mode imped-

ances with W/b is cumputed for a symmetric stripline with
Cl = C2=1.0, pi/al = 0.005, pl/al = 0.01, ql = 0.0, and S/b=

0.1,0.5 as a parameter and the results are presented in Fig. 5. For

the sake of comparison, the numerical results obtained by Cohn

for a planar structure [7] are also presented in the same figure in

the form of circles.

Following similar procedure, the variation of even- and odd-

mode impedances of a microstripline is computed as a function

of W/h (h = pl) for c1 = 10.0, ql = 0.0, pl/al = 0.01, and S/h

= 0.2 and the results are presented in Fig. 5. The results obtained

by Bryant and Weiss [8] for a planar structure are also presented

in the same figure in the form of crosses. There is a good

agreement betweens the two sets of results.

IV. CONCLUSION

Agreement between the results obtained by the present method

for the warped coupled strip- and microstriplines with those of

Cohn for a planar symmetric coupled stripline, as well as Bryant

and Weiss for a planar coupled microstripline, justifies the valid-

ity of the analysis. It k worthwhile to mention that computation

is also made for ql = 10° and the deviation of corresponding

numerical results from those for TJl -0° k negligibly small. The

advantage of the method of analysis presented in this paper is

that the same general formulation developed for coupled ellipti-

cal stripline structure can be applied to the coupled cylindrical

strip- and microstriplines of elliptic and circular cross section.

The method of analysis presented in the paper has enabled

evaluation of even- and odd-mode impedance for different dielec-

trics on the two sides of the coupled strips.
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Fig. 1. Double-plane step transformer. (a) Four-section transformer between

a higher arrd a lower band waveguide. S1l = input reflection coefficient at

the higher band side, %2 - input reflection coefficient at the lower band

side. (b) Single-step discontinuity.

(18-26.5 GHz), and Ku- (2,6.5-40 GHz) band wavegnides. The calcula-

tions, based on a field expansion into orthogonal eigenmodes, teke into

account the influence of higher order modes. For frequency ranges other

than the bands given, simple scaling formulas based on the optimized data

yield transformer desigsss with sufficiently low VSWR. Optimum short

transformers are possible if the total transformer length is included within

the error function to he optimized. Measurements agree with theory.

I. INTRODUCTION

Double-plane step transformers (Fig. l(a)) are common micro-

wave circuits [1] used to match rectangular waveguides having

different heights and widths. Direct design of correct transformer

section lengths is not possible using transmission-line theory

[1]-[3]. Consequently, individual measurements at each junction

are usually required [1]. For computer-aided designs which lead

directly to suitable prototypes, therefore, exact field theory meth-

ods [4] are necessary. The recent interest in modal analysis

solutions of the concentric double-step problem [5], [6] (although

previously solved—even for the general excentnc case [4], [7])

seems to confirm this need.

Based on the theory given in [4], this paper introduces com-

puter-optimized design tables for muhisection transformers be-

tween X-, Ku-, K-, and Ku-band waveguides.1 Calculations show

that, already for the four-section case, the input reflection coeffi-

cient is less than about five percent (i.e., a VSWR of about 1.1)

within an approximate frequency band of 1.3:1. The frequency
range of unambiguous waveguide application is determined by
mode cutoff frequencies of the adjacent waveguide bands (TEIO

cutoff of the higher band and TE20 cutoff of the lower band).

Because of the inhomogeneous character of the double-plane step

discontinuities, simple scaling formulas for transforming design

data to other frequency ranges do not yield optimum results.

Nevertheless, the deviations may be tolerable for many practical

applications, as is demonstrated by two examples.

lX-band: 8.2–12.4 GHz; Ku-band: 12,4–18 GHz; K-band: 18–26.5 GHz:

and Ku-band: 26.5–40 GHz.

If the total length is not restricted, the computer optimization

yields transformer sections which are within a deviation of about

forty percent of one quarter wavelength at the midband frequency.

For other applications (e.g., satellite communication), however,

shorter designs may be advantageous. Therefore, by including the

total length in the optimization process, an optimum short two-

section transformer between K- and Ku-band waveguides is

found and fabricated as a design example. Measurements agree

well with theory if mechanical tolerances are included in the

computation.

II. THEORY

The theory is given in abbreviated form only; for details, the

reader is referred to [4].

For the double-plane step (Fig. l(b)), the fields

ii=jocV Xiiez+VXViihz (1)

are derived from the axial components of the magnetic and

electric Hertzian vector potentials fik and fie, respectively.

These potentials are assumed to be a sum of suitable eigenmodes

satisfying the vector Hehnholtz equation and the boundary con-

ditions in waveguide sections 1 and 2 (denoted by the superscript

v):

where M and N are the number of modes considered.

The eigenfunctions T(v) are normalized [8] so that the power

camied by a given wave is proportional to the square of the

absolute value of the amplitude coefficients A, B

2.cos(k$;. (x-c) ).cos(k$).(y -d))
T~)/ =

Dl”m”m

2.sin(kj~.(x -c)). sin(kj). (y-d))
T:j) =

D1

2.sin(kJ~). x).sin(kj~).y)
~:’) =

Dz
(3)

where m=pandn=lforv=l; m=iandn =jforv=2 with
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where al < a2, bl < fr2 (cf., Fig. l(b)) and

k = q.& and 8.,, = Kronecker delta

(r=p, 1, i, and j, respectively). (5)

The still-unknown coefficients A and B in (2) correspond

directly to normalized incident and reflected waves, respectively,

and are related to each other by the scattering matrix

(6)

which can be determined by matching the fields at the step

discontinuity at z = O with the areas F1 and F, (cf., Fig. l(b))

(7)

The related coupling integrals are given in [4] and are reproduced

using the present notation in the Appendix.

For double-plane steps with eccentric axes [4], the incident

TEIO wave excites all TE~n and TM~R waves. For concentric axes

(the usual configuration for transformers (Fig. l)), the excitation

is limited to waves with odd m and even n.

In order to preserve numerical accuracy, the direct combina-

tion of the involved scattering matrices at all step discontinuities

of the total transformer is used [4]; as opposed to the common

treatment by transmission matrices. Although analytically some-

what more extensive, this technique leads to matrix elements only

containing exponential functions with negative argument [4]; so,

the fringing fields due to modes of higher order than the funda-

mental mode evapesce relatively quickly with distance between

adjacent discontinuities. This direct combination of scattering

matrices avoids numerical instabilities caused by the otherwise

known situation of interacting discontinuities, like interference or

resonance effects. Therefore, no further improvement of the

analysis is necessary, e.g., by termination of modes by their

characteristic admittances [9], [10].

Due to this matrix technique, it has turned out that modes up

to the order M = 5 and N = 4 (cf., (2)), i.e., up to TM54 and

TE54, are all that are required in the calculations for the designs

given in this paper to yield sufficient asymptotic behavior of the

scattering coefficients ISii 1.This may be verified by Fig. 2 show-

ing the convergence behavior for ISll I = IS22I of a three-section

transformer from Ku- to K-band, as a typical design example, at

two different frequencies (Fig. 2(a) and (b)). In spite of the

interaction of the discontinuities, the results for ISll I calculated

with M = 5, N = 4 in (2) differ only slightly from the asymptotic

value calculated with M = 13, N = 12. Similar results may be

stated by other examples. Fig. 2(a) indicates further that the

order M of the modes has a more severe influence on the

convergence behavior than N. This is due to the fact that,

between the discontinuities, modes have to be taken into account

in succession of increasing cutoff frequencies; TEIO, TE30, TE12,

TM12, TE32, TM32, TE50, etc. Finally, as may be stated in

comparison of Fig. 2(a) with Fig. 2(b), the order of modes

necessay does not vary considerably with frequency, since the

matrix technique chosen eliminates resonance effects which occur

using the common treatment with transmission matrices.
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Fig. 2. Convergence behavior of the scattering coefficient ISII I = [,S22I of a

three-section transformer from Ka- to K-band (cf., Table I) as a function of

the highest mode order M and N, considered in (2). (a) ~= 23 GHz (the

upper number at the calculated points denominates M, the lower cle-
nominates N). (b) ~ = 26 GHz. (M= 5, N = 4 are chosen for the calcula-

tions within this paper).

III. RESULTS

Optimized design data for multisection transformers are given

in Table I. The v@es were calculated with the evolution strate,gy

method [11]. The advantages of this method are such that local

minima may be found and no differentiation step in the calculat-

ion algorithm (like the Fletcher-Powell method) is necessary.

The error function

(8)

is minimized with respect to the parameter vector

~U are frequency sample points, aq, bq, and I,g are, respectively,

the width, the height, and the length of the q th transformer

section, and Sll, S21 are scattering parameters. The number of

frequency sample points U was chosen to be equal to 7. The time

for the optimization of one set of transformer parameters is about

60 tin for a four-section prototype (Siemens 7880 computer).
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Fig. 3. Input reflection coefficient [S,,/ as function of frequency if a TEIO-wave

is incident at port i = 1 or z = 2, respectively. (a) Single-step discontrmrrty

from K- to Ku-band (10.7X4.32 mmz to 15.8X 7.9 mmz ). (b) Two-section

transformer (cf., Table I) between K- to Ku-band.
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Fig. 3 shows the input reflection coefficient IS,, I as a function

of frequency of the TEIO wave at port i = 1 or i = 2 if a TEIO

wave is incident at the corresponding waveguide port for the

double-step discontinuity from K- to Ku-band waveguide (Fig.

3(a)). Even a two-section transformer (Table I) between the

waveguides reduces the maximum passband value IS,, I = 0.22

(Fig. 3(a)) to about 0.03 (Fig. 3(b)) within nearly the range of

suitable waveguide application, which is limited by the cutoff

frequencies of the TE20 wave in the broader (Ku-band) wave-

guide and of the TEIO wave of the smaller (K-band) waveguide.

Within this unambiguous range, the TEIO-wave reflection coeffi-

cient 1S22[ for a TEIO-wave incident at port 2 at the broader

waveguide is equal to ISll 1, the input reflection coefficient at the

smaller waveguide at port 1. Since this holds for all design

examples in this paper, Table I also may be used for optimum

transformers from the broader to the smaller waveguides. Fig. 4

shows the input reflection coefficients of the TEIO wave for

four-section transformers between Ku- and K-band (Fig. 4(a))

and Ku- and X-band (Fig. 4(b)) as examples.

Transformer designs for waveguide dimensions other than the

standard Ku- to X-band values considered in Table I can be

obtained using the simple scaling relations given as follows:

a
qopt — ‘H _ aqnew — aHnew

—
a= — aH a L new — ai7new

bqopt – bH bqnew – bHnew

bL – bH = bL .ew – bHnew

where

a q “Cw, bqnew= qth transformer section

width and height,

b b‘Hnew> Hnew~ aLnew~ Lnew = actual higher (H)- and

lower ( L)-band waveguide

dimensions,

aH, bH, aL, bL =higher (H)- and lower (L)-band

waveguide dimensions in Table I

which are in the proximity of aH new

etc.,

baqopt7 qopt = related optimum transformer

dimensions in Table I.

(9)

The transformer section lengths Z,q are scaled in relation to the

ratio of the old to the new arithmetic midband guide wavelength

AgO. This simple frequency transformation, if applied to the a, b

dimensions (instead of (9)), would lead to poorer input reflection

factor results. Moreover, (9) automatically includes the dimen-

sions of the new lower and higher band waveguides rmd guaran-

tees nearly the same bandwidth behavior of the transformer.

The transformer dimensions interpolated with (9) yield suffi-

ciently low input reflection values, although not as good as the

computer-optimized results. This is demonstrated in Fig. 5(a) and

(b) for two three-section transformer examples (from Ku- to

X-band and Ku- to K-band) based on the optimized K- to

Ku-band design (Table I).

If the total transformer length is included in the error function

(8), optimum short transformers are possible. Fig. 6(a) shows an

example of a two-section transformer between K- and Ku-band

waveguides, which is about 36 percent shorter than the

“ quarter-wave’’-type of Table I. In this example, the frequency

behavior is nearly the same and the absolute input reflection

values are only about twice as high (solid versus dashed line). Fig.

6(b) shows a photograph of the actual short section transformer

used to obtain the experimental results. The measurements agree
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Fig. 4. Input reflection coefficient ISII I at port 1 as a function of frequency if

a TElo-wave is incident at port i = 1 or i = 2, respectively. (a) Four-section

transformer (cf., Table I) between Ka- and K-band. (b) Four-section trans-

former (cf., Table I) between Ku- and X-band
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Fig. 5. Input reflection coefficient I.$iilatport iasafunctionof frequency of

a three-section transfornym. ---- optimized (Table I) ——— scaled down or

UP, respectively, ac~rding tO (9) with Optimized K- tO Ku-band results. (a)
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Fig. 6. Optimum short two-section transformer between K- and Ku-baad

(Table I). (a) Input reflection coefficient lS,i I at port i as a function of

frequency, (b) photograph.

well with theory (Fig. 6(a)) if the actual dimensions (measured

with a microscope) are included in the computations. The me-

chanical tolerances are 0.08 mm.

IV. CONCLUSION

Computer-aided design of multisection double-plane step

transformers between rectangular waveguides of different heights

and widths is performed by including the higher order mode

excitation effects in the theory. In contrast to E-plane or H-plane

stepped transformers, double-plane step circuits require all six

field components to be considered. The orthogonal expansion

method used in the calculations shows sufficient asymptotic

behavior of the input reflection results if all modes up to TN15d
~d TE5a Me included. An error function, numerically miti-

mized, yields one- to four-section transformer dimensions be-

tween the standard waveguide bands (X to Ku, Ku to K, K to

Ka, and vice versa). For other frequency bands, simple scaling

formulas based on the optimized data yield transformer designs

with sufficiently low reflection coefficients. If the total trarts-

former length is included in the optimization process, optimum

short transformer sections are obtained. This is demonstrated Iby
a Ku- to K-band two-section prototype, which is about 36

percent shorter than its “quarter-wave” counterpart. Measu~e-

ments agree well with theory if the mechanical tolerances are

included.

APPENDIX

Coupling integrals related to (7) (cf., [4])
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(A4)

where FI = area of waveguide 1 (see Fig. l(b)). The vectors Z

denote

(A5)

(A6)

(A7)

(A8)
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Abstract — In this paper, we present a method for analyzing finline

structures with finite metaflization thickness. The method is based on a

hybrid mode forsmdation but it by-passes the lengthy process of forsnolat-

irrg the determinantaf equation for the unknown propagation constant.

Some numericaf results are presented to show the effect of the metaUiza-

tion thickness for unilateral and bilateraf finlines.
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I. INTRODUCTION

Finline structures have received considerable attention because

of their usefulness as millimeter-wave integrated-circuit compo-

nents. Recently, two efficient numerical methods for analyzing

the propagation characteristics of finline strictures were pre-

sented. The first of these employs the spectral-domain technique

[1], [2], whereas the second utilizes network analytical methods

for electromagnetic fields [3]. Both of these methods are based on

the hybrid mode formulation, but they neglect the effect of the

metallization thickness, which increases with higher operating

frequencies and narrower gaps in the metallization. An eigen-

value equation for a unilateral finline with a finite metallization

thickness has been previously derived [4] using the hybrid mode

formulation, but only approximate results based on the TE-

approximation have been presented in the above paper. In this

paper, we discuss an efficient hybrid mode formulation for the

finite metallization problem and derive the solution to the prob-

lem without resorting to the TE-approximation. Although the

method is an extension of the treatment in [3], [5], and [6], it

derives Green’s functions using the conventional circuit theory

rather than by directly solving the differential equations with

boundmy conditions.

II. Tm NETWORK FORMULATION OF THE PROBLEM

The unilateral firdine shown in Fig. 1 is used to illustrate the

formulation procedure, but the method itself is quite general.

As a first step, we express the transverse (to z) fields in each

region by the following spectral representation:

z=1,2,3,4 (1)

‘(’) ~d ~};) in each region arewhere the vector mode functions ~1~

given as

A) region (l), (3), and (4)

j{;) = $
r

A { XOa~ cos(ss~x)-JOj/30 sin(a~x)}
A

f-{
~j;) . + % 2oj~Oc0s(a~x) –joa~sin(aAx)}

A

g};) = ~. x J$) (1=1,2)

a.=~,K~={m

{

l(rr=o)

‘n= 2(n #o)”

B) retion (2)

(2)

ff:) = $ F~ * { ioawcos(awx)-JO j/30 sin(awx)}

ff) = +
~{ L ZOj~ocos(awx) –j@wsin(awx)}

~ 2W

~}:)=zoxj:) (/=1,2), Lvw=; , Kw=(a (3)

where & is the propagation constant, and iO, JO, and 20 are the

.x-, y-, and z-directed unit vectors, respectively. It should be

‘(’ ) ‘(’j satisfy thenoted that the vector mode functions ~l. , gl.
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