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Fig. 5. Variation of even- and odd-mode impedances as a function of W/b
and W/h for coupled warped striplines and microstrip lines, respectively.
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where S is the edge to edge separation of the planar strips. When
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In this case, the expressions for the even- and odd-mode imped-
ances of warped coupled striplines reduce to the from
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Using (16) and (17), the variation of even- and odd-mode imped-
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ances with W/b is computed for a symmetric stripline with
¢ =¢,=10, p,/a,=0005, p,/a, =001, n,=0.0, and S/b=
0.1, 0.5 as a parameter and the results are presented in Fig. 5. For
the sake of comparison, the numerical results obtained by Cohn
for a planar structure [7] are also presented in the same figure in
the form of circles.

Following similar procedure, the variation of even- and odd-
mode impedances of a microstripline is computed as a function
of W/h (h=p)) for ¢ =10.0, 9, =00, p, /a; =0.01, and S/h
= 0.2 and the results are presented in Fig. 5. The results obtained
by Bryant and Weiss [8] for a planar structure are also presented
in the same figure in the form of crosses. There is a good
agreement betweens the two sets of results.

IV. CONCLUSION

Agreement between the results obtained by the present method
for the warped coupled strip- and microstriplines with those of
Cohn for a planar symmetric coupled stripline, as well as Bryant
and Weiss for a planar coupled microstripline, justifies the valid-
ity of the analysis. It is worthwhile to mention that computation
is also made for n, =10% and the deviation of corresponding
numerical results from those for 1, = 0° is negligibly small. The
advantage of the method of analysis presented in this paper is
that the same general formulation developed for coupled ellipti-
cal stripline structure can be applied to the coupled cylindrical
strip- and microstriplines of elliptic and circular cross section.
The method of analysis presented in the paper has enabled
evaluation of even- and odd-mode impedance for different dielec-
trics on the two sides of the coupled strips.
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Fig. 1. Double-plane step transformer. (a) Four-section transformer between

a higher and a lower band waveguide. S;; = input reflection coefficient at
the higher band side, S,, = input reflection coefficient at the lower band
side. (b) Single-step discontinuity.

(18-26.5 GHz), and Ka- (26.5-40 GHz) band waveguides. The calcula-
tions, based on a field expansion into orthogonal eigenmodes, take into
account the influence of higher order modes. For frequency ranges other
than the bands given, simple scaling formulas based on the optimized data
yield transformer designs with sufficiently low VSWR. Optimum short
transformers are possible if the total transformer length is included within
the error function to be optimized. Measurements agree with theory.

1. INTRODUCTION

Double-plane step transformers (Fig. 1(a)) are common micro-
wave circuits [1] used to match rectangular waveguides having
different heights and widths. Direct design of correct transformer
section lengths is not possible using transmission-line theory
[1]-[3]. Consequently, individual measurements at each junction
are usually required [1]. For computer-aided designs which lead
directly to suitable prototypes, therefore, exact field theory meth-
ods [4] are necessary. The recent interest in modal analysis
solutions of the concentric double-step problem [5], [6] (although
previously solved—even for the general excentric case [4], [7])
seems to confirm this need.

Based on the theory given in [4], this paper introduces com-
puter-optimized design tables for multisection transformers be-
tween X-, Ku-, K-, and Ka-band waveguides.! Calculations show
that, already for the four-section case,the input reflection coeffi-
cient is less than about five percent (i.e., a VSWR of about 1.1)
within an approximate frequency band of 1.3:1. The frequency
range of unambiguous waveguide application is determined by
mode cutoff frequencies of the adjacent waveguide bands (TE,,
cutoff of the higher band and TE,, cutoff of the lower band).
Because of the inhomogeneous character of the double-plane step
discontinuities, simple scaling formulas for transforming design
data to other frequency ranges do not yield optimum results.
Nevertheless, the deviations may be tolerable for many practical
applications, as is demonstrated by two examples.

!X-band: 8.2-12.4 GHz; Ku-band: 12.4-18 GHz; K-band: 18-26.5 GHz:
and Ka-band: 26.5-40 GHz.
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If the total length is not restricted, the computer optimization
vields transformer sections which are within a deviation of about
forty percent of one quarter wavelength at the midband frequency.
For other applications (e.g., satellite communication), however,
shorter designs may be advantageous. Therefore, by including the
total length in the optimization process, an optimum short two-
section transformer between K- and Ku-band waveguides is
found and fabricated as a design example. Measurements agree
well with theory if mechanical tolerances are included in the
computation.

II. THEORY

The theory is given in abbreviated form only; for details, the
reader is referred to [4].
For the double-plane step (Fig. 1(b)), the fields

E=-jwuvﬁh2+v Xvﬁez
H=joev X, +v x vII,,

€

are derived from the axial components of the magnetic and
electric Hertzian vector potentials II, and II,, respectively.
These potentials are assumed to be a sum of suitable eigenmodes
satisfying the vector Helmholtz equation and the boundary con-
ditions in waveguide sections 1 and 2 (denoted by the superscript

v):
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where M and N are the number of modes considered.

The eigenfunctions T*) are normalized [8] so that the power
carried by a given wave is proportional to the square of the
absolute value of the amplitude coefficients 4, B
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where a; < a,, b; < b, (cf, Fig. 1(b)) and

2
i =jk\/1——-—————(k§‘y"Z (k2)

k2
k= w‘/;:._e_ and 8, , = Kronecker delta
(r=p,1,i,and j, respectively). (5)
The still-unknown coefficients 4 and B in (2) correspond

directly to normalized incident and reflected waves, respectively,
and are related to each other by the scattering matrix

BMY AD

(30)-9(0)

which can be determined by matching the fields at the step
discontinuity at z = 0 with the areas F, and F, (cf., Fig. 1(b))

(6)
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The related coupling integrals are given in [4] and are reproduced
using the present notation in the Appendix.

For double-plane steps with eccentric axes [4], the incident
TE,, wave excites all TE,,, and TM,,, waves. For concentric axes
(the usual configuration for transformers (Fig. 1)), the excitation
is limited to waves with odd m and even ».

In order to preserve numerical accuracy, the direct combina-
tion of the involved scattering matrices at all step discontinuities
of the total transformer is used [4], as opposed to the common
treatment by transmission matrices. Although analytically some-
what more extensive, this technique leads to matrix elements only
containing exponential functions with negative argument [4]; so,
the fringing fields due to modes of higher order than the funda-
mental mode evanesce relatively quickly with distance between
adjacent discontinuities. This direct combination of scattering
matrices avoids numerical instabilities caused by the otherwise
known situation of interacting discontinuities, like interference or
resonance effects. Therefore, no further improvement of the
analysis is necessary, e.g, by termination of modes by their
characteristic admittances [9], [10].

Due to this matrix technique, it has turned out that modes up
to the order M =35 and N=4 (cf, (2)), ie, up to TM,, and
TE;,, are all that are required in the calculations for the designs
given in this paper to yield sufficient asymptotic behavior of the
scattering coefficients |S;;| This may be verified by Fig. 2 show-
ing the convergence behavior for |S);|=1|S,,| of a three-section
transformer from Ka- to K-band, as a typical design example, at
two different frequencies (Fig. 2(a) and (b)). In spite of the
interaction of the discontinuities, the results for |S;,| calculated
with M =5, N =4 in (2) differ only slightly from the asymptotic
value calculated with M =13, N =12. Similar results may be
stated by other examples. Fig. 2(a) indicates further that the
order M of the modes has a more severe influence on the
convergence behavior than N. This is due to the fact that,
between the discontinuities, modes have to be taken into account
in succession of increasing cutoff frequencies; TE,,, TEs,, TE,,,
TM,,, TE;,, TM;,, TEs,, etc. Finally, as may be stated in
comparison of Fig. 2(a) with Fig. 2(b), the order of modes
necessary does not vary considerably with frequency, since the
matrix technique chosen eliminates resonance effects which occur
using the common treatment with transmission matrices.
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Fig. 2. Convergence behavior of the scattering coefficient |Sy;|=|Sy,| of a
three-section transformer from Ka- to K-band (cf., Table I) as a function of
the highest mode order M and N, considered in (2). (a) f=23 GHz (the
upper number at the calculated points denominates M, the lower de-
nominates N). (b) f=26 GHz. (M =5, N=4 are chosen for the calcula-
tions within this paper).

III.

Optimized design data for multisection transformers are given
in Table I. The values were calculated with the evolution strategy
method [11]. The advantages of this method are such that local
minima may be found and no differentiation step in the calcula-
tion algorithm (like the Fletcher—Powell method) is necessary.
The error function

RESULTS

ey SuZLIE
F( ) Z |S21(E’fu)|2

is minimized with respect to the parameter vector

(®)

u=1

- T
x=(a17a2,‘"7aQ;b17b2"":bQ;ltlaltZs”',th) .

f, are frequency sample points, a,, b,, and /,, are, respectively,
the width, the height, and the length of ithe gth transformer
section, and S;;,S,; are scattering parameters. The number of
frequency sample points U was chosen to be equal to 7. The time
for the optimization of one set of transformer parameters is about
60 min for a four-section prototype (Siemens 7880 computer).
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Fig. 3. Input reflection coefficient |S,,| as function of frequency if a TE;o-wave
is incident at port i =1 or 1= 2, respectively. (a) Single-step discontinuity
from K- to Ku-band (10.7X4.32 mm’? to 15.8 X7.9 mm?). (b) Two-section
transformer (cf., Table I) between K- to Ku-band.
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Fig. 3 shows the input reflection coefficient |S,,| as a function
of frequency of the TE,, wave at port i=1 or i=2 if a TE,
wave is incident at the corresponding waveguide port for the
double-step discontinuity from K- to Ku-band waveguide (Fig.
3(a)). Even a two-section transformer (Table I) between the
waveguides reduces the maximum passband value [S,|= 0.22
(Fig. 3(a)) to about 0.03 (Fig. 3(b)) within nearly the range of
suitable waveguide application, which is limited by the cutoff
frequencies of the TE,;, wave in the broader (Ku-band) wave-
guide and of the TE,, wave of the smaller (K-band) waveguide.
Within this unambiguous range, the TE,,-wave reflection coeffi-
cient |S,,| for a TE,,-wave incident at port 2 at the broader
waveguide is equal to |Sy;|, the input reflection coefficient at the
smaller waveguide at port 1. Since this holds for all design
examples in this paper, Table I also may be used for optimum
transformers from the broader to the smaller waveguides. Fig. 4
shows the input reflection coefficients of the TE;, wave for
four-section transformers between Ka- and K-band (Fig. 4(a))
and Ku- and X-band (Fig. 4(b)) as examples.

Transformer designs for waveguide dimensions other than the
standard Ka- to X-band values considered in Table I can be
obtained using the simple scaling relations given as follows:

Qyopt ~ Ay _ Qynew — Hnew

a,—ay A new ~ CHnew
bqopt - bH _ bqnew - anew (9)
bL - bH bLnew - anew

where

@4 news Dynew = qth transformer section
width and height,
QHnew» anew’ QL news bL new aCtual higher (H)' and

lower ( L)-band waveguide
dimensions,

ay, by, a;, b; =higher (H)- and lower (L)-band
waveguide dimensions in Table I
which are in the proximity of ay .,
etc.,

@, 0pts Dyope =Telated optimum transformer

dimensions in Table L.

The transformer section lengths /,, are scaled in relation to the
ratio of the old to the new arithmetic midband guide wavelength
A,,- This simple frequency transformation, if applied to the a, b
dimensions (instead of (9)), would lead to poorer input reflection
factor results. Moreover, (9) automatically includes the dimen-
sions of the new lower and higher band waveguides and guaran-
tees nearly the same bandwidth behavior of the transformer.

The transformer dimensions interpolated with (9) yield suffi-
ciently low input reflection values, although not as good as the
computer-optimized results. This is demonstrated in Fig. 5(a) and
(b) for two three-section transformer examples (from Ku- to
X-band and Ka- to K-band) based on the optimized K- to
Ku-band design (Table I).

If the total transformer length is included in the error function
(8), optimum short transformers are possible. Fig. 6(a) shows an
example of a two-section transformer between K- and Ku-band
waveguides, which is about 36 percent shorter than the
“quarter-wave”-type of Table I. In this example, the frequency
behavior is nearly the same and the absolute input reflection
values are only about twice as high (solid versus dashed line). Fig.
6(b) shows a photograph of the actual short section transformer
used to obtain the experimental results. The measurements agree
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Fig. 4. Input reflection coefficient |S;;| at port 1 as a function of frequency if
a TEg-wave is incident at port i =1 or i = 2, respectively. (a) Four-section
transformer (cf., Table I) between Ka- and K-band. (b) Four-section trans-
former (cf., Table I) between Ku- and X-band.
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well with theory (Fig. 6(a)) if the actual dimensions (measureﬂ
with a microscope) are included in the computations. The me-
chanical tolerances are 0.08 mm.

. IV. CONCLUSION

Computer-aided design of multisection double-plane step
transformers between rectangular waveguides of different heights
and widths is performed by including the higher order mode
excitation effects in the theory. In contrast to E-plane or H-plane
stepped transformers, double-plane step circuits require all six
field components to be considered. The orthogonal expansion
method used in the calculations shows sufficient asymptotic
behavior of the input reflection results if all modes up to TM,,
and TE,, are included. An error function, numerically -mini-
mized, yields one- to four-section transformer dimensions be-
tween the standard waveguide bands (X to Ku, Ku to K, K to
Ka, and vice vérsa). For other frequency bands, simple scaling
formulas based on the optimized data yield transformer designs
with sufficiently low reflection coefficients. If the total trans-
former length is included in the optimization process, optimum
short transformer sections are obtained. This is demonstrated by
a Ku- to K-band two-section prototype, which is about 36
percent shorter than its “quarter-wave” counterpart. Measure-
ments agree well with theory if the mechanical tolerances are
included.

APPENDIX
Coupling integrals related to (7) (cf., [4))
. thj —(1 3 :
Vinijpt = (1) jF & ) - ei(u)) dxdy (A1)
‘/ (2) ., (D
YthYepl
_ Yy M\ _ 22 -
~Vieijpr = , JEZ ./;:l(egp)[)( el(u'}) dxdy=0 (A2)
A
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- Vehtjpl TOWE) '/;‘ ( ) 913) dXdy (A3)
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Yept . »
Vet = 2 [ (20)(22) axay (Ad)

Ye: 7 1

where F) = area of waveguide 1 (see Fig. 1(b)). The vectors é
denote
‘—';I(tlp?I = éz X nyTh(};)l (AS)
ég}: =Vx Tep/ (A6)
e =8 x v, T (A7)
2 = 2)
éd=v, TP (A8)
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Analysis of Finline with Finite
Maetallization Thickness

TOSHIHIDE KITAZAWA AND RAJ MITTRA, FELLOW, IEEE

Abstract —In this paper, we present a method for analyzing finline
structures with finite metallization thickness. The method is based on a
hybrid mode formulation but it by-passes the lengthy process of formulat-
ing the determinantal equation for the unknown propagation constant.
Some numerical results are presented to show the effect of the metalliza-
tion thickness for unilateral and bilateral finlines.
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I. INTRODUCTION

Finline structures have received considerable attention because
of their usefulness as millimeter-wave integrated-circuit compo-
nents. Recently, two efficient numerical methods for analyzing
the propagation characteristics of finline structures were pre-
sented. The first of these employs the spectral-domain technique
[1], [2], whereas the second utilizes network analytical methods
for electromagnetic fields [3]. Both of these methods are based on
the hybrid mode formulation, but they neglect the effect of the
metallization thickness, which increases with higher operating
frequencies and narrower gaps in the metallization. An eigen-
value equation for a unilateral finline with a finite metallization
thickness has been previously derived [4] using the hybrid mode
formulation, but only approximate results based on the TE-
approximation have been presented in the above paper. In this
paper, we discuss an efficient hybrid mode formulation for the
finite metallization problem and derive the solution to the prob-
lem without resorting to the TE-approximation. Although the
method is an extension of the treatment in [3], [5], and [6], it
derives Green’s functions using the conventional circuit theory
rather than by directly solving the differential equations with
boundary conditions.

II. THE NETWORK FORMULATION OF THE PROBLEM

The unilateral finline shown in Fig. 1 is used to illustrate the
formulation procedure, but the method itself is quite general.

As a first step, we express the transverse (to z) fields in each
region by the following spectral representation:
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where the vector mode functions £ and g{? in each region are
given as
A) region (1), (3), and (4)
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where B, is the propagation constant, and X, ¥,, and Z, are the
x-, y-, and z-directed unit vectors, respectively. It should be
noted that the vector mode functions f{',g{) satisfy the
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